Confidence Interval

Steps to Create a Confidence Interval for the mean (Large Sample)

1. List all given sample data from the problem including sample size and C-level
2. Find $z_{\alpha / 2}$
3. Calculate the margin of error, $E=z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)$
4. Calculate $[\bar{x}-E, \bar{x}+E]$

Steps to Create a Confidence Interval for the mean (Small Sample)

1. List all given sample data from the problem including sample size and C-level
2. Find $t_{\alpha / 2}$
3. Calculate the margin of error, $E=t_{\alpha / 2}\left(\frac{s}{\sqrt{n}}\right)$
4. Calculate $[\bar{x}-E, \bar{x}+E]$

Steps to create a Confidence Interval for a population proportion:

1. Gather sample data: x (or \hat{p}), n , and C-level, calculate $\hat{p}=\frac{x}{n} \&(1-\hat{p})=\hat{q}$
2. Find $Z_{\alpha / 2}$
3. Calculate the Margin of Error, $\mathrm{E}=Z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}$
4. Finally, form $[\hat{p}-E, \hat{p}+E]$

Sample Size for Estimating the Mean:

$$
n=\left[\frac{z_{\alpha / 2} \sigma}{E}\right]^{2}
$$

Steps to test a hypothesis:

1. Express the original claim symbolically
2. Identify the Null and Alternative hypothesis
3. Record the data from the problem
4. Calculate the test statistic using either $z=\frac{\bar{x}-\mu_{0}}{\frac{\sigma}{\sqrt{n}}}$ or $t=\frac{\bar{x}-\mu_{0}}{\frac{s}{\sqrt{n}}}$ or $\rho=\frac{\hat{p}-\rho_{0}}{\sqrt{\frac{p_{0} q_{0}}{n}}}$
5. Determine your rejection region (or find your p-value).
6. Find the initial conclusion
7. Word your final conclusion

Steps to calculate a p-value:

1. Draw a bell curve
2. Place your test statistic on the curve (on the right if it's positive, on the left if it's negative)
3. Use the z-table to find one of the following:

- the area to the left of the test statistic if Ha uses a < sign
- the area to the right of the test statistic if Ha uses a > sign
- twice the tail area beyond the test statistic if Ha uses a \neq

