Formula Card for Chapters Five and Six

For Problems Dealing With the Normal Distribution (they say normally distributed in the directions...)

There are three cases

1. Directions say: Find the probability of randomly selecting a ...

- Draw the bell curve, label the mean, and standard deviation
- Put a Z number line and an X number line at the bottom of the curve
- Shade the desired area that you are looking for
- Convert your x - score into a z-score using $Z=\frac{X-\mu}{\sigma}$
- Look your z-score up on the table from the book (that is the area from your zscore to the mean on the curve)
- If necessary perform the arithmetic needed to get your desired area

2. Directions say: Find the probability of randomly selecting n...that have an average ...

- Draw the bell curve, label the mean, and standard deviation **do not forget that for this problem the stan. dev. becomes $\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}$
- Put a Z number line and an \bar{X} number line at the bottom of the curve
- Shade the desired area that you are looking for
- Convert your \bar{X} - score into a z-score using $Z=\frac{\bar{X}-\mu}{\sigma_{\bar{X}}}$
- Look your z-score up on the table from the book (that is the area from your zscore to the mean on the curve)
- If necessary perform the arithmetic needed to get your desired area

3. Directions say: Find the score (height, weight, ...) that separates the bottom...

- Draw the bell curve, label the mean, and standard deviation **Do not forget that for this problem we will be putting an area associated with a given percentile (using the normal table in reverse)
- Put a Z number line and an X number line at the bottom of the curve
- Look up the necessary area to get your z - score on the Z table (watch your sign on the z -score)
- Convert your z- score into an X-score using $X=Z \sigma+\mu$

